Reducing Transistor Variability For High Performance Low Power Chips

HOT Chips 24

Dr Robert Rogenmoser
Senior Vice President Product Development & Engineering
Overview

- Transistor Variability Limits Chips
 - Impact on Mobile System on Chip (SOC)
 - Limited Low Power Design Techniques
 - Where does Variability come from?

- New Transistor Alternatives to Reduce Variability
 - Deeply Depleted Channel (DDC) technology
 - Silicon Impact

- Outlook
 - Taking advantage of Deeply Depleted Channel (DDC) in Mobile SOC
What is needed in Mobile System on Chip?

- Multiple blocks with different performance requirements
 - Integrated on the same die
 - Different power modes – would like to run at different supplies
 - Multiple V_T transistors used to control leakage
 - Single chip solution requires analog integration

- Need co-design of architecture, circuits and transistor technology for best solution
Variability Limits Design & Architecture

- Limited benefit using voltage scaling (DVFS)
 - Cannot overdrive much due to reliability and power restrictions
 - Dynamically lowering voltage limited to 100-200mV
 - Only lowering frequency leaves large leakage power
 - “Run to hold” beats DVFS despite overhead

- Finicky SRAM memories
 - High SRAM V_{MIN} leaves no room for memory voltage scaling
 - Many circuit tricks to improve V_{MIN} and noise margins
 - Design teams moved to dedicated power rail for SRAM
 - Works for CPU – difficult in GPU
 - Impacts power network integrity – more fluctuations

- Analog performance and area challenge
 - Analog functions not getting smaller at next process node (still)
 - New process node too costly for required performance

- Transistor variability limits chips
Transistor Variation Source of Chip Variation

- **Global/Systematic/Manufacturing Variation**
 - Shifts all the transistors similarly on the same wafer
 - Longer/shorter transistor lengths
 - More (or less) implant energy and dose
 - Will result in speed/power distribution
 - Intel/AMD → Sell different speed bins
 - Consumer → Design to maximize yield
 - Could be fixed with body biasing

- **Local/Random Variation**
 - Small number of dopants in transistor channel
 - Transistor next to each other vary widely
 - Random Dopant Fluctuation (RDF)
 - Apparent in threshold voltage mismatch (σV_T)
 - Impacts speed, leakage, SRAM & Analog
 - Industry solution: Remove RDF using Undoped Channel

- What is the right silicon roadmap going forward?
Transistor Alternatives

- **FinFET or TriGate**
 - Promises high drive current
 - Manufacturing, cost, and IP challenge
 - Doped channel to enable multi V_T

- **FDSOI**
 - Showing off undoped channel benefits
 - Good body effect, but lack of multi V_T capability
 - Restricted supply chain

- **DDC – Deeply Depleted Channel transistor**
 - Straight forward insertion into Bulk Planar CMOS
 - Multi V_T capability and good body effect
 - Easy migration of existing IP
Deeply Depleted Channel™ (DDC) Transistor

1. **Undoped or very lightly doped region**
 - Significantly reduced transistor random variability σV_T
 - Lower leakage
 - Better SRAM (I_{READ}, lower V_{min} & V_{ret})
 - Tighter corners
 - Smaller area analog design
 - Higher channel mobility (increased I_{eff}, lower DIBL)
 - Higher speed, improved voltage scaling

2. **V_T setting offset region**
 - Enables multiple threshold voltages

3. **Screening region**
 - Strong body coefficient
 - Bias bodies to tighten manufacturing distribution
 - Body biasing to compensate for temperature and aging

Benefits similar to FinFET in planar bulk CMOS
Lower Transistor Variability Reduces Leakage

- Transistor variability is reflected in threshold voltage (V_T) distribution
- Leakage current is exponentially dependent on V_T
- Lower V_T variability (σV_T) reduces number of leaky low V_T devices
- Power dissipation is dominated by low V_T edge of distribution
- Smaller $\sigma V_T \rightarrow$ Less leakage power for digital and memory/SRAM
Lower Transistor Variability Improves Speed

- Nominal (TT) ring oscillator speed expected to be 400ps (A)
 - Equivalent to having many similar critical paths in a chip
 - V_T variation will randomly affect paths within the same die limiting speed to 470ps
- Undoped channel reduces variability and increase mobility (B)
 - 25% faster mean, 30% faster tail due to tighter distribution
- To match performance lower V_{DD} until tails have same speed (C)
 - Large impact on power due square dependence $P=CV^2f+IV$
Lower Variability Improves Transistor Matching

- SRAM memories built using 6-T SRAM cell
 - Smallest transistors on every chip, worst V_T mismatch
 - Higher V_{DD} is required to avoid failures
 - Demonstrated SRAM to V_{min} of 0.425V
- In analog circuits, matching is key
 - Large transistors used to improve relative variability in current mirrors, differential pairs, etc.
- Better transistor matching allows for
 - Area savings
 - Higher performance
 - Lower power
- Undoped channel improves R_{OUT} ➔ higher gain
Better Chips with Body Biasing

- Body Bias to fix systematic variation
 - Speed-up (forward bias - FBB) slow parts
 - Cool down (reverse bias - RBB) hot parts
 -> Increase manufacturing yield
- Body bias enables multiple modes of operation
 - Active -> minimize power at every performance
 - Standby -> leakage reduction, testing, power gating
- DDC provides 2-4x larger body factor
- Inverter ring-oscillators (RO) fabricated at process corners
 - Baseline @ 1.2V V_{DD} and DDC @ 0.9V V_{DD}
- For each corner, DDC RO is faster and lower power
- Using strong body coefficient to pull in corners
 - Half the power (50% less power) while matching speed
Tighter Manufacturing Corners w/ DDC

- Better process control leads to tighter corners
 - Manufacturing flow further reduces layout effects
- 1 sigma tighter wafer to wafer and within wafer variation for DDC
- Less overdesign as max paths and min (hold) paths are closer
- Faster design closure ➔ earlier tapeout ➔ shorter TTM
Voltage Scaling to 0.6V V_{DD}

- Achieve half the speed at 1/6 the power @0.6V V_{DD}
- Use body bias to compensate for temperature and aging
 - Critical for low V_{DD} operation
 - Enable workable design window – avoid overdesign
This is HotChips – Go Faster!

- **Turbo Mode**: DDC achieves over 50% speedup @ 1.2V V_{DD}
 - All corners for DDC run at 580MHz vs 370MHz for baseline

<table>
<thead>
<tr>
<th>DVFS</th>
<th>Baseline</th>
<th>DDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>1.2V</td>
<td>0.6V</td>
</tr>
<tr>
<td>Speed</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Power</td>
<td>1</td>
<td>0.17</td>
</tr>
</tbody>
</table>
28nm and Beyond

- Same performance at 0.75V V_{DD} as baseline at 0.9V V_{DD}
 - 30% lower power
 - Alternatively 25% faster at same voltage
- Even better when using body bias to pull in corners
Applying DDC to Lower Variability in Mobile SOC

- **CPU**: Single thread performance critical
 - Push frequency by temporarily raising voltage in turbo mode
 - DVFS with body biasing becomes DVBFS

- **GPU**: High number of cores using small transistors
 - Less overdesign due to lower delay variability
 - Increase parallelism, lower voltage, body bias dynamically for more pixels/Watt

- **Lower frequency blocks**
 - In addition to high V_T transistors also run at lower voltage and optimal body bias

- **Whole chip**: Use body bias to adjust for manufacturing variation
 - Take advantage of improved memory and analog performance
 - Lowering variability while compatible with existing bulk planar silicon IP
Conclusions

- Power reduction through migration no longer possible
 - No next process node – variability limits chips
 - Semiconductor industry is looking for new transistor technology

- DDC provides performance kicker from 90nm to 20nm
 - Straight forward integration into existing nodes
 - Less variability, tighter corners, simple manufacturing steps
 - Compatible with existing bulk planar CMOS silicon IP

- DDC brings back low power tools
 - Large range DVFS
 - Body biasing
 - Low voltage operation

- Taking advantage of reduced variability DDC in design and architecture will lead to next level in mobile SOC